Solitons of the coupled Schrödinger-Korteweg-de Vries system with arbitrary strengths of the nonlinearity and dispersion.

نویسندگان

  • Evgeny Gromov
  • Boris Malomed
چکیده

New two-component soliton solutions of the coupled high-frequency (HF)-low-frequency (LF) system, based on Schrödinger-Korteweg-de Vries (KdV) system with the Zakharov's coupling, are obtained for arbitrary relative strengths of the nonlinearity and dispersion in the LF component. The complex HF field is governed by the linear Schrödinger equation with a potential generated by the real LF component, which, in turn, is governed by the KdV equation including the ponderomotive coupling term, representing the feedback of the HF field onto the LF component. First, we study the evolution of pulse-shaped pulses by means of direct simulations. In the case when the dispersion of the LF component is weak in comparison to its nonlinearity, the input gives rise to several solitons in which the HF component is much broader than its LF counterpart. In the opposite case, the system creates a single soliton with approximately equal widths of both components. Collisions between stable solitons are studied too, with a conclusion that the collisions are inelastic, with a greater soliton getting still stronger, and the smaller one suffering further attenuation. Robust intrinsic modes are excited in the colliding solitons. A new family of approximate analytical two-component soliton solutions with two free parameters is found for an arbitrary relative strength of the nonlinearity and dispersion of the LF component, assuming weak feedback of the HF field onto the LF component. Further, a one-parameter (non-generic) family of exact bright-soliton solutions, with mutually proportional HF and LF components, is produced too. Intrinsic dynamics of the two-component solitons, induced by a shift of their HF component against the LF one, is also studied, by means of numerical simulations, demonstrating excitation of a robust intrinsic mode. In addition to the above-mentioned results for LF-dominated two-component solitons, which always run in one (positive) velocities, we produce HF-dominated soliton complexes, which travel in the opposite (negative) direction. They are obtained in a numerical form and by means of a quasi-adiabatic analytical approximation. The solutions with positive and negative velocities correspond, respectively, to super- and subsonic Davydov-Scott solitons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons

We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...

متن کامل

New analytical soliton type solutions for double layers structure model of extended KdV equation

In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...

متن کامل

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

Modulational instability in the dynamics of interacting wave packets: the extended Korteweg-de Vries equation

This paper is concerned with interacting wave packet dynamics for long waves. The Kortweg-de Vries equation is the most well-known model for weakly nonlinear long waves. Although the dynamics of a single wave packet in this model is governed by the defocusing nonlinear Schrödinger equation, implying that a plane wave is modulationally stable, the dynamics of two interacting wave packets is gove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 2017